
Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 1876

Detail-preserving pulse wave extraction from
facial videos using consumer-level camera

DINGLIANG WANG,1 XUEZHI YANG,2,3,* XUENAN LIU,1 JIN JING,1

AND SHUAI FANG1

1School of Computer and Information, Hefei University of Technology, Hefei, 230009, China
2School of Software, Hefei University of Technology, Hefei, 230009, China
3Anhui Key Laboratory of Industry Safety and Emergency Technology, Hefei, 230009, China
*xzyang@hfut.edu.cn

Abstract: With the popularity of smart phones, non-contact video-based vital sign monitoring
using a camera has gained increased attention over recent years. Especially, imaging photoplethys-
mography (IPPG), a technique for extracting pulse waves from videos, conduces to monitor
physiological information on a daily basis, including heart rate, respiration rate, blood oxygen
saturation, and so on. The main challenge for accurate pulse wave extraction from facial videos
is that the facial color intensity change due to cardiovascular activities is subtle and is often
badly disturbed by noise, such as illumination variation, facial expression changes, and head
movements. Even a tiny interference could bring a big obstacle for pulse wave extraction and
reduce the accuracy of the calculated vital signs. In recent years, many novel approaches have
been proposed to eliminate noise such as filter banks, adaptive filters, Distance-PPG, and machine
learning, but these methods mainly focus on heart rate detection and neglect the retention of
useful details of pulse wave. For example, the pulse wave extracted by the filter bank method
has no dicrotic wave and approaching sine wave, but dicrotic waves are essential for calculating
vital signs like blood viscosity and blood pressure. Therefore, a new framework is proposed to
achieve accurate pulse wave extraction that contains mainly two steps: 1) preprocessing procedure
to remove baseline offset and high frequency random noise; and 2) a self-adaptive singular
spectrum analysis algorithm to obtain cyclical components and remove aperiodic irregular noise.
Experimental results show that the proposed method can extract detail-preserved pulse waves
from facial videos under realistic situations and outperforms state-of-the-art methods in terms of
detail-preserving and real time heart rate estimation. Furthermore, the pulse wave extracted by
our approach enabled the non-contact estimation of atrial fibrillation, heart rate variability, blood
pressure, as well as other physiological indices that require standard pulse wave.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Long-term and regular monitoring of vital signs such as heart rate (HR), heart rate variability
(HRV), blood oxygen saturation (SpO2), blood viscosity and blood pressure (BP) are important
for the early warning of cardiovascular diseases. Currently, the gold standard techniques to
measure the vital signs are based on contact sensors or specific devices such as electrocardiogram
(ECG) probes, blood pressure cuffs and pulse oximeters. However, these sensors or devices are
inconvenient for daily use and may cause skin irritation in case of treatment for newborns.

In the past decade, researchers have focused on non-contact detection methods and found that
the change of blood volume in the capillaries underneath the skin leads to small change in the
skin color which can be captured by consume-level cameras. This discovery directly motivated
the development of imaging photoplethysmography (IPPG), a technique for extracting pulse
waves from videos [1–3]. In 2011, Poh et al. first realized facial heart rate detection using a
webcam [11], since then, non-contact heart rate detection based on IPPG technology has become
a research hotspot.
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The main challenge for accurate pulse wave extraction from facial videos is that the color
change of the face due to cardiovascular activities is subtle and many factors could contaminate the
pulse wave and make the extraction task difficult, for example, both environmental illumination
variations and subjects’ motions could affect the gray value of the face region significantly, such
as the flicker of light, the inner noise of the digital camera, the facial expression changes and
the unconsciously shaking of head. Recent years, many new methods have been proposed to
detect pulse wave which are mainly focused on HR estimation and overlooked the preservation
of pulse details [9–15]. Yet, effective methods for facial videos under realistic situations are
scarce. Li et al. proposed an anti-interference method called normalized Least Mean Square
(NLMS) adaptive filter which could rectify the illuminance variation [16], but a smooth rectifier
in background is critical for establishing the desired signal as the input of the NLMS adaptive filer,
which is hard to realize practically. Afterwards, some novel methods were proposed, in 2014,
Yu et al. proposed the filter bank method and achieved satisfying accuracy of HR estimation
[17], this method divides the bandwidth from 0.8 Hz to 4 Hz into 16 sub-bands (0.02 Hz for each
sub-band), then use the sub-bands to bandpass the source signal and get 16 filtered components,
finally, the component with the highest energy is selected as pulse wave and HR can be estimated
according to the central frequency of the corresponding sub-band. Due to the usage of 0.02Hz
narrowband, the pulse wave extracted by filter bank approaching sine wave and cannot be used
for the measurement of many vital signs such as blood viscosity. In 2015, Kumar et al. proposed
the Distance-PPG method which combines skin-color change signals from different tracked
regions of the face using a weighted average, where the weights depend on the blood perfusion
and incident light intensity in the region [18]. Distance-PPG method has excellent anti-noise
performance, but the pulse wave extracted by Distance-PPG could not see obvious dicrotic wave.
Another shortage is that Distance-PPG algorithm is time-consuming which makes it unsuitable
for real-time vital signs calculation on smart phones. To the best of our knowledge, no method
has been demonstrated to be able to extract detail-reserved standard pulse wave from facial videos
under realistic conditions.

In this paper, a new method is proposed to realize detail-preserving pulse wave extraction from
facial videos under realistic situations. Firstly, the subject’s facial region is tracked to remove
rigid motion disturbance, and the original pulse wave is obtained by calculating the mean value of
green channel pixels in the facial region. Afterwards, baseline cancelation, spike smoothing and
five-point cubic smoothing algorithms are performed to remove baseline offset and high-frequency
random noise. The self-adaptive singular spectrum analysis algorithm is then adopted to remove
irregular noise caused by non-rigid motions and illumination changes while keep useful details
reserved. Experimental results show that the proposed method outperforms state-of-the-art
method in real time HR (RTHR) estimation and detail-preserving. Furthermore, our method has
already been transplanted to smart phone and realized very accurate HR calculation. Our fitness
diagnosis APP (android version) will be released in the near future.

2. Method

Pulsewave is one of themost important human body signalswhich contains abundant physiological
information and can be used for diagnosing cardiovascular diseases or mental sickness [4–7]. As
shown in Fig. 1, the pulse wave features such as ascending limb, descending limb and dicrotic
wave are important for assessing cardiovascular condition [8], for example, the gradient of
ascending limb is closely related to systolic blood pressure, and the sharpness of dicrotic wave is
associated with arterial stiffness. Therefore, accurate pulse wave extraction from facial videos
with useful details reserved is crucial for non-contact vital sign monitoring and is also the focus
of this paper.
The overall framework of the proposed method is shown in Fig. 2 with an example of low

signal to noise ratio (SNR). This section will explain our method in detail to show how it works.
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Fig. 1. Typical pulse wave of a single period.

Fig. 2. Overall framework of the proposed method. The raw pulse example shown above
exists a sharp drop which brings big obstacle for accurate pulse wave extraction.

2.1. Raw pulse acquisition

Face detecting and tracking are essential for raw pulse acquisition as head movements and
background noise could affect pulse wave significantly. Hence the Viola-Jones face detector of
OpenCV is adopted to detect the face rectangle for each video frame [20] and only the pixels in
the face rectangle participating the construction of raw pulse.

The selection of color channel is crucial too. There are mainly three color models applied in raw
pulse acquisition: Red-Green-Blue (RGB), Hue-Saturation-Intensity (HSI), and YCbCr where
Y stands for luminance component and Cb and Cr refer to blue-difference and red-difference
chroma components respectively. For HSI model, only the H channel can be used for pulse
extraction and it is motion sensitive. According to Sahindrakar et al., YCbCr produces better
results in detecting HR than HSI with limited movements [21]. Among these three models, the
most robust model is still RGB and the green channel of RGB gives the strongest signal-to-noise
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ratio (SNR) [22–25]. Therefore, the raw pulse is constructed by calculating the mean value of
the green channel values of pixels in the detected face rectangle.

2.2. Preprocessing

Even if the face region is tracked precisely, it may still be challenging to extract clean pulse
wave during motion. As shown in Fig. 3(a), the average intensity within the facial region
could experience a significant sudden drop or rise and the cause of such a shift is often due
to facial expression changes or a motion-induced camera focus change [26]. To address this
problem, several useful algorithms are applied including baseline cancelation, spike smoothing
and five-point cubic smoothing.

1) Baseline cancelation: This algorithm is mainly used for eliminating the trend and sharp drop
or rise in raw pulse. Firstly, the raw pulse is cut into several M-point non-overlapping segments
and calculate the mean value of each segment. Then, detrend the signal by making the mean value
of each segment equals to the mean value of overall raw pulse. According to our experiments,
it is suggested to use signal sampling rate as the value of segment length M. The signal after
baseline cancelation is shown as Fig. 3(b).

2) Spike smoothing: Although the signal after baseline cancelation is an approximation to the
ideal pulse signal, one spike noise, which comes from the demean of sharp drop, exists. Hence
the spike smoothing algorithm is proposed to deal with it. First, the raw pulse is cut into several
M-point non-overlapping segments and the standard deviation of each segment is calculated.
If the standard deviation of a segment exceeded two times of overall standard deviation, the
corresponding segment is considered highly noisy and a compression method is employed to
smooth the segment. Equation (1) is the core of the compression method:

CR = 0.6 + 0.4 ∗
sdi − 2 ∗ sd

sdi
(1)

where CR is the compress rate used to smooth the noisy segment, sdi is the standard deviation of
the noisy segment, and sd is the overall standard deviation of the pulse signal. It is obvious that
the calculated CR increases with the increase of sdi. All pulse wave values in the noisy segment
are multiplied by (1- CR) to achieve spike smoothing, and the actual effect of the proposed spike
smoothing algorithm is shown in Fig. 3(c).

3) Five-point cubic smoothing: This algorithm is used to remove high frequency random noise
while keep the original curve characteristics unchanged. Firstly, a cubic polynomial is used to fit
experimental data:

Y(t) = a0 + a1t + a2t2 + a3t3 (2)

Then compute the undetermined coefficients in Eq. (2) by defining a least square formula shown
below:

2∑
i=−2

R2
i =

2∑
i=−2


3∑

j = 0
ajtji − Yi


2

= φ(a0, a1, a2, a3) (3)

To make φ(a0, a1, a2, a3) minimum, we compute partial derivative for ak (k= 0,1,2,3) and let
the partial derivative be zero, the following equation will be obtained:

2∑
i=−2

Yitki =
2∑

i=−2
tki

3∑
j=0

ajtji (4)

The undetermined coefficients ak (k= 0, 1, 2, 3) can be calculated from Eq. (4), and the five-point
cubic smoothing formulas below are obtained by substituting ak (k= 0, 1, 2, 3) into Eq. (2).
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Fig. 3. Baseline cancelation and smoothing. (a): the raw pulse, (b) the pulse after baseline
cancelation, (c) the pulse after spike smoothing, (d) the pulse after five-point cubic smoothing.

Notice that Eq. (5), Eq. (6), Eq. (8) and Eq. (9) are used for the four points in both ends, and
Eq. (7) is used for all the other points.

Y−2 =
1
70
(69Y−2 + 4Y−1 − 6Y0 + 4Y1 − Y2) (5)

Y−1 =
1
30
(2Y−2 + 27Y−1 + 12Y0 − 8Y1 + 2Y2) (6)

Y0 =
1
35
(−3Y−2 + 12Y−1 + 17Y0 + 12Y1 − 2Y2) (7)

Y1 =
1
35
(2Y−2 − 8Y−1 + 12Y0 + 27Y1 + 2Y2) (8)

Y2 =
1
70
(−Y−2 + 4Y−1 − 6Y0 + 4Y1 + 69Y2) (9)

Five-point cubic smoothing algorithm utilizes polynomial least square to approximate sampling
points, it can produce much better results than conventional moving average filter in detail-
preserving. The signal after five-point cubic smoothing is shown as Fig. 3(d).

2.3. Self-adaptive singular spectrum analysis

A newmethod that combines singular spectrum analysis with self-adaptive function (self-adaptive
SSA) is proposed to remove irregular noise and extract clean pulse wave with useful details
reserved. Self-adaptive SSA is a global analysis method based on phase space reconstruction
which decomposes original signal into multiple variable components [27] and choose appropriate
components automatically to reconstruct pulse wave. The main steps of the proposed self-adaptive
SSA method include trajectory matrix construction, singular value decomposition, self-adaptive
components selection, and signal reconstruction. Through the use of self-adaptive SSA, main
periodic components in original signal could be extracted to reconfigure pulse wave.
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1) Trajectory matrix construction: Suppose the total length of time series x(t) is N, the
window length used to construct trajectory matrix is L, and define K =N-L+ 1, then the
trajectory matrix can be represented as:

X =



x1 x2 · · · xK

x2 x3 · · · xK+1
...

...
...

...

xL xL+1 · · · xN


(10)

It is obvious that the trajectory matrix is a Hankel matrix. The main concern here is the
choose of window length L, and according to Mahmoudvand et al. [28], when L takes
the median value of N, the corresponding singular value will get the maximum, so the
literature recommended that in most cases the median value of N is the best choice for L.

2) Singular value decomposition: This method has already been widely used in principal
component analysis (PCA), pattern recognition, data compression, and so on. The singular
value decomposition of trajectory matrix X is given as:

X =
d∑

i=1
λiUiVT

i (11)

where d is the number of non-zero singular values of X, and it is obvious that d = rank(X) ≤min(L,
K). Here, λ1 is the largest singular value, and the value of λi decreases as the index i
increases, this means components with lower index number contributes to the origin signal
more. Ui and Vi are the left and right singular vectors of X respectively.

3) Self-adaptive components selection: It is generally believed that the main energy of a
signal is concentrated on the first r (r< d) larger singular values, while the smaller singular
values are regarded as noise components. Figure 4 shows an example of original signal
and its 5 components reconstructed from the former 5 singular values respectively, and it is
obvious that the first component has the highest energy, while the last component has the
lowest energy. The purpose of components selection is to determine an appropriate value
for r, so that the noise-free pulse wave can be reconstructed from the former r singular
values. If r is too small, the useful details like dicrotic wave will be lost, and if r is too
large, the noise reduction performance will be poor, thus the exact augmented Lagrange
multiplier algorithm (EALM) is adopted to achieve self-adaptive components selection
[29]. High-dimensional data can be considered sparse, and its sparsity is reflected in its
low rank property, thus trajectory matrix X can be approximated by its best low rank
matrix S. Suppose X is contaminated by slight Gauss noise E and sparse big noise W, and
| |E| |F ≤ δ where | |E| |F represents the nuclear norm of E, then matrix denoise problem can
be described by the following optimization problem:

min ‖ S‖∗ + γ ‖ W‖0, γ = 1/
√

max(m, n)

s.t. ‖ X − S −W ‖≤ δ
(12)

where m, n denotes the number of rows and columns of matrix X respectively, | |W| |0 denotes the
zero-norm of matrix W. To solve this optimization problem, the following Lagrange function is

Corrected: 03 Apr 2020



Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 1882

defined:

L(S,W,Y, µ) = ‖S‖∗ + γ ‖ W| |0 + YT (X − S −W) + µ

2
‖ X − S −W| |2F

= ‖ S‖∗ + γ ‖ W| |0 + YTH(X) + µ

2
‖ H(X)| |2F

(13)

where µ is the punishment coefficient, and the initial value of Lagrange multiplier Y can be
represented as:

Y0 = sgn(X)/max(‖sgn(X)‖2, γ−1 ‖ sgn(X)‖∞) (14)
where sgn is signum function, | |X| |∞ denotes the infinite-norm of X, and | |X| |2 denotes the
2-norm of X. The following EALM algorithm could be used to iteratively solve Eq. (13):

The convergence condition of EALM algorithm is that L(S, W, Y, µ) derives S equals to zero
and H(X)≤δ. Reference [30] proved theoretically that the Lagrange multiplier Y is sufficient to
guarantee the linear convergence of the EALM algorithm when the function H(X) is continuously
differentiable. When the algorithm converges, the output matrix Sk is the best low rank matrix
to approximate the source matrix X, and it is recommended to reconstruct pulse wave with the
first rank(Sk) singular values, in other words, the appropriate value for r is rank(Sk). Notice that
EALM algorithm requires µ to iterate from a smaller positive number so that noise matrix W can
be well estimated. For an extreme counterexample, if the initial value µ0 is infinite, the algorithm
converges in the first iteration and the noise matrix W is not estimated at all. The coefficient ρ
determines the convergence rate which should be set based on the balance between time and
accuracy of the algorithm, and the typical value for ρ is between 1.1 and 2.

4) Signal reconstruction: Signal can be reconstructed from the former r larger singular values
using the matrix RCA shown in Eq. (15). RCA is also called reconstruction matrix, which
is defined as the product of first r columns of U and first r rows of VT.

RCA = U(1, 2, · · · , r) ∗ VT

©«

1

2
...

r

ª®®®®®®®¬
(15)
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Fig. 4. Original pulse and its main components 1-5.

The dimension of matrix RCA is L×K, and furtherly define L*=min(L, K), K*=max(L, K), and
yi,j represents the value of column j in row i of matrix RCA, then the reconstructed signal yrc can
be obtained by:

yrc =



1
k

k∑
m=1

ym,k−m+1 1 ≤ k<L∗

1
L∗

L∗∑
m=1

ym,k−m+1 L∗ ≤ k ≤ K∗

1
N−k+1

N−K∗+1∑
m=k−K∗+1

ym,k−m+1 K∗<k ≤ N

(16)

After the above steps, the denoised pulse wave could finally be obtained and Fig. 5 shows
the actual performance of the proposed self-adaptive SSA method. Here, the total length of
pulse signal is 160, the window length L is set to 80, and the number of singular values used to
reconstruct pulse wave is 8 (r= 8). After using self-adaptive SSA, the irregular noise caused by
motions or illumination changes are reduced significantly, while useful details like dicrotic wave
preserved.
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Fig. 5. Extract clean pulse wave using self-adaptive SSA.

3. Experiments

3.1. Experimental setup

MAHNOB-HCI is a public database which contains videos of 30 subjects recorded at 61 fps with
a resolution of 780×580 pixels, and the synchronized ECG signals are provided as the ground
truth [19]. Our method is evaluated on MAHNOB-HCI database for the following reasons:
1) it contains abundant facial videos recorded under realistic situations, and both illumination
variations and subjects’ motions are involved; 2) ground-truth HR values are recorded by ECG
simultaneously; 3) it is a public database that can be easily accessed by all researchers who would
like to do further comparison fairly [19].
The performance of our method as well as other state-of-the-art methods [9,11,16,17,18] are

compared on average HR, and real time HR (RTHR) using MAHNOB-HCI database. One video
corresponds to one average HR calculated by our improved peak detection algorithm which uses
both amplitude and time thresholds to pick out main peaks in pulse wave and compute the mean
value of peak to peak intervals for HR estimation. RTHR values are obtained from a 5-second
sliding window (4-second overlap) also using our improved peak detection algorithm.
The Pearson correlation coefficient, pulse rate variability (PRV), ascending limb precision,

descending limb precision, dicrotic duration precision and dicrotic amplitude precision are
used as the indicators to evaluate detail preserving ability. Here, ground-truth pulse waves are
recorded from earlobe at 200 Hz using a PPG sensor, while facial videos are recorded at 30 fps
simultaneously using a consume-level camera of Logitech.
Furthermore, our method is also evaluated on smartphone to verify its accuracy in practice.

The video recording parameters for smartphone is set to 30 fps with a resolution of 1280×720
pixels, and the ground truth HR are recorded simultaneously using the pulse oximeter of Heal
Force.

3.2. Experimental results on the MAHNOB-HCI database

MAHNOB-HCI database contains abundant facial videos recorded under realistic situations,
and both illumination variations and subjects’ motions are involved which makes pulse wave
extraction challenging. In this section, 208 videos are picked from MAHNOB-HCI database for
experiments, and the time duration of each video varies from 13 seconds to 20 seconds.
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Fig. 6. Bland-Altman diagrams of our proposed method and other state-of-the-art methods.
Each subplot gives the mean error between estimated RTHR sequence and ground truth
RTHR sequence, and the ground truth RTHR sequence is obtained from synchronized ECG
signal.

In order to evaluate the performance of RTHR estimation, a 5-second sliding window (4-second
overlap) is adopted to get RTHR sequence, and the consistence between the estimated RTHR
sequence and ground truth RTHR sequence is assessed using Bland-Altman plot as shown in
Fig. 6 where our method and other state-of-the-art methods are compared together. The two
dotted lines in each subplot represent the confidence range [µ-1.96σ, µ+1.96σ], and only the
points between the dotted lines are considered highly credible. Results in Fig. 6 show that our
method outperforms other state-of-the-art methods in RTHR estimation with 2 values slightly out
of bounds. The result of Kumar et al. [18] is also acceptable with 5 values slightly out of bounds.
The proposed method is also compared with other state-of-the-art methods on average HR

estimation, and Table 1 shows the mean absolute error (MAE), standard deviation (SD), root
mean square error (RMSE) and Pearson correlation coefficient ρ between estimated HR and
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ground truth. Experimental results show that our method achieves superior performance to the
methods in [9,11,16,17] and similar to that of Kumar et al. [18] under realistic situations in terms
of average HR estimation.

Table 1. Performance comparison on average HR estimation using MAHNOB-HCI database

Method MAE (bpm) SD (bpm) RMSE (bpm) ρ

Balakrishnan [9] 8.71 24.30 25.12 0.81

Poh [11] 4.16 14.52 15.43 0.83

X. Li [16] 3.67 9.48 11.64 0.92

Y. Yu [17] 5.94 11.00 9.33 0.86

M. Kumar [18] 2.47 5.13 5.40 0.94

Our method 2.05 4.92 5.27 0.96

Furthermore, the performance comparison for different skin tones is also studied. MAHNOB-
HCI database contains samples of different countries which covers nearly all kinds of skin tones
and thus can be divided into white, olive and black according to the shade of color. 12 subjects
are picked out (4 white, 4 olive and 4 black) for tests and Fig. 7 shows the agreement between
measured and ground-truth RTHR of different skin tones. Although the white skin tone category
got the best agreement, the proposed method performs well for the other two categories too,
which verified its effectiveness in processing low SNR signals.

Fig. 7. Comparison of HR measured from consumer-level camera and from ground truth
pulse oximeter using the proposed method for different skin tones: white, olive and black.

3.3. Experimental results of detail-preserving capability

As for detail-preserving ability, the extracted pulse wave of our method is compared with three
state-of-the-art methods [16,17,18]. Methods in [9,11] are both based on blind source separation
which combines signals in red, green and blue channels to get one independent component,
but any interference would affect the three channels at the same time, thus methods in [9,11]
would unlikely be able to recover pulse wave when head motions or illumination changes are
involved. Therefore, we believe our method outperforms [9,11] in real mobile scenarios and
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thus not making experimental comparison with them. Figure 7 is the test scenario for evaluating
detail-preserving ability.

In this experiment, 5 individuals were tested (3 males and 2 females) and each subject received
10 tests with slightly head motions and facial expression changes permitted. The calculated
Pearson correlation coefficient is used to evaluate pulse recovery ability of each method, and
the higher the coefficient value, the more accurate the extracted pulse wave is. The root mean
square error (RMSE) of PRV estimation is also compared to show how accuracy the method
could achieve. Ascending limb precision (Pu), descending limb precision (Pd), dicrotic duration
precision (Pt) and dicrotic amplitude precision (Ph) are defined in Eq. (17), Eq. (18), Eq. (19)
and Eq. (20) respectively.

Pu =
1
n

∑
|Up − Ug | (17)

Pd =
1
n

∑
|Dp − Dg | (18)

Pt =
1
n

∑
|Tp − Tg | (19)

Ph =
1
n

∑
|ARp − ARg | (20)

where n is the number of tests for each subject. Up and Ug represent the time duration of
ascending limb of extracted pulse wave and ground-truth respectively, while Dp and Dg represent
the time duration of descending limb of extracted pulse wave and ground-truth. Tp and Tg are the
time duration between systolic peak and dicrotic peak of extracted pulse wave and ground-truth
respectively. ARp and ARg are the amplitude ratio of systolic peak to dicrotic peak of extracted
pulse wave and ground-truth. Note that, the single period waveforms with no dicrotic wave will
be discarded when calculating Pt and Ph. It is evident that Pu and Pd are related to the accuracy
of overall shape, while Pt and Ph can characterize the location and amplitude accuracy of dicrotic
wave respectively. Table 2 shows the test result of each method and Fig. 9 gives an example of
extracted facial pulse wave using each method.

Table 2. Experimental results of detail-preserving capability. Comparison with state-of-the-art
methods.

Method
Pearson correlation

coefficient
RMSE of PRV
estimation (ms) Pu (ms) Pd (ms) Pt (ms) Ph

X. Li 0.66 64 36 47 22 0.72

Y. Yu 0.54 75 33 51 30 1.15

M. Kumar 0.83 26 27 35 14 0.23

The proposed method 0.91 23 19 28 11 0.16

Experimental results in Table 2 and Fig. 8 demonstrated that our method performs best in
detail-preserving with relevance of 0.91 and smaller values for the parameters RMSE, Pu, Pd, Pt
and Ph achieved. Due to the usage of narrowband filter, the pulse wave extracted by Yu et al.
approaching sine wave. Method of Li et al. is acceptable with inapparent dicrotic wave reserved.
The extracted pulse wave of M. Kumar has obvious dicrotic waves but exists distortion compared
with ground-truth.

3.4. Experimental results on smartphone

Our algorithms were also transplanted to mobile phone (HUAWEI P20) and 5 individuals were
tested (3 males and 2 females). Everyone was asked to do two sets of tests: one for stationary test
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Fig. 8. Comparison of extracted pulse wave from facial video (a high SNR example).

where the face of subject keeps motionless, and another for dynamic test where the subject is free
to speak and move head. Each subject received 10 stationary and dynamic tests respectively, and
the ground truth values are recorded by pulse oximeter of Heal Force simultaneously. Figure 9
shows how the subjects were tested.

Fig. 9. Test scenario for HR estimation using smartphone.
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Experimental results are shown in Table 3, our method achieved satisfying accuracy of HR
estimation on smartphone in both stationary and dynamic scenarios. For stationary scenario,
the mean absolute error (MAE) of tested subjects is lower than 2 bpm which reaches medical
standard, and for dynamic scenario, the MAE is about 3 bpm which is acceptable for daily HR
monitoring. The developed android APP will be online soon.

Table 3. HR estimation based on smartphone using the proposed method

category Subject ID MAE (bpm) SD (bpm) RMSE (bpm)

stationary

1 1.03 2.33 3.12

2 1.70 3.07 2.94

3 0.58 1.41 1.53

4 2.21 3.68 3.43

5 1.12 2.06 3.70

dynamic

1 2.15 3.24 3.18

2 3.41 5.26 5.52

3 2.57 5.17 4.79

4 2.12 3.19 4.30

5 3.10 4.33 5.84

4. Conclusion

In this paper, a new method for detail-preserving pulse wave extraction from facial videos is
introduced. The method consists of preprocessing procedure and a newly proposed self-adaptive
SSA algorithm. Our experiments are based on a public database called MAHNOB-HCI so
that all researchers who would like to do further comparison fairly could access this database
easily. Experimental results show that the proposed method outperforms state-of-the-art methods
in average HR, RTHR, and detail-preserving. The mean absolute error of the estimated HR
using our method is 2.05 bpm while that of best-performance contrasted method is 2.47 bpm.
As for detail-preserving capability, the pulse wave extracted by our method shows a very high
correlation of 0.91 with ground-truth.
Another contribution of the proposed method is that it enabled the non-contact estimation of

atrial fibrillation, heart rate variability, blood pressure, as well as other physiological parameters
that require standard pulse wave on portable devices. Our approach has already been implemented
on smartphone (android version) and achieved satisfactory HR estimation. The developed android
APP will be online soon.

Although the proposed method meets the requirement of accurate pulse wave extraction under
realistic situations, the presence of large motions, such as intense head swing, is still a remaining
challenge and a large motion disturbance detection and disposal algorithm should be included in
further work.
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